Problem A. 13

Noting that $\operatorname{det}(\widetilde{\mathbf{T}})=\operatorname{det}(\mathbf{T})$, show that the determinant of a hermitian matrix is real, the determinant of a unitary matrix has modulus 1 (hence the name), and the determinant of an orthogonal matrix (footnote 13) is either +1 or -1 .

Solution

Note also that

$$
\begin{aligned}
\operatorname{det}\left(\mathrm{T}^{*}\right) & =\left[\sum \sigma\left(p_{1}, p_{2}, \ldots, p_{n}\right) T_{1 p_{1}}^{*} T_{2 p_{2}}^{*} \cdots T_{n p_{n}}^{*}\right] \\
& =\left[\sum \sigma\left(p_{1}, p_{2}, \ldots, p_{n}\right) T_{1 p_{1}} T_{2 p_{2}} \cdots T_{n p_{n}}\right]^{*} \\
& =(\operatorname{det} \mathrm{T})^{*},
\end{aligned}
$$

where the sum is taken over the n ! permutations of $1,2, \ldots, n$, and $\sigma=1$ or $\sigma=-1$ if $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ has even parity or odd parity, respectively. A hermitian matrix is a matrix that's equal to its hermitian conjugate.

$$
\mathrm{H}=\mathrm{H}^{\dagger}
$$

Take the determinant of both sides.

$$
\begin{aligned}
\operatorname{det} \mathbf{H} & =\operatorname{det}\left(\mathbf{H}^{\dagger}\right) \\
& =\operatorname{det}\left(\widetilde{\mathbf{H}^{*}}\right) \\
& =\operatorname{det}\left(\mathbf{H}^{*}\right) \\
& =(\operatorname{det} \mathbf{H})^{*}
\end{aligned}
$$

Therefore, the determinant of a hermitian matrix is real. A unitary matrix is a matrix whose inverse is equal to its hermitian conjugate.

$$
\mathrm{U}^{-1}=\mathrm{U}^{\dagger}
$$

Premultiply or postmultiply both sides by U .

$$
U U U^{-1}=U U^{\dagger}
$$

The product of a matrix with its inverse is the identity matrix.

$$
\mathrm{I}=\mathrm{UU}^{\dagger}
$$

Take the determinant of both sides.

$$
\operatorname{det} \mathbf{I}=\operatorname{det}\left(\mathbf{U} \mathbf{U}^{\dagger}\right)
$$

The determinant of the identity matrix is 1 . Use the fact that the determinant of a product is the product of the determinants.

$$
\begin{aligned}
1 & =\operatorname{det}(\mathbf{U}) \operatorname{det}\left(\mathbf{U}^{\dagger}\right) \\
& =\operatorname{det}(\mathbf{U}) \operatorname{det}\left(\widetilde{\mathrm{U}^{*}}\right) \\
& =\operatorname{det}(\mathbf{U}) \operatorname{det}\left(\mathbf{U}^{*}\right) \\
& =(\operatorname{det} \mathbf{U})(\operatorname{det} \mathbf{U})^{*} \\
& =|\operatorname{det} \mathbf{U}|^{2}
\end{aligned}
$$

Take the square root of both sides, discarding the minus sign since the modulus must be positive.

$$
|\operatorname{det} \mathrm{U}|=1
$$

Therefore, the determinant of a unitary matrix has modulus 1 . An orthogonal matrix is a matrix whose inverse is equal to its transpose.

$$
\mathrm{O}^{-1}=\widetilde{\mathrm{O}}
$$

Premultiply or postmultiply both sides by O .

$$
\mathrm{OO}^{-1}=\mathrm{O} \widetilde{\mathrm{O}}
$$

The product of a matrix with its inverse is the identity matrix.

$$
\mathrm{I}=\mathrm{O} \widetilde{\mathrm{O}}
$$

Take the determinant of both sides.

$$
\operatorname{det} \mathbf{I}=\operatorname{det}(\mathrm{O} \widetilde{\mathrm{O}})
$$

The determinant of the identity matrix is 1 . Use the fact that the determinant of a product is the product of the determinants.

$$
\begin{aligned}
1 & =\operatorname{det}(\mathrm{O}) \operatorname{det}(\widetilde{\mathrm{O}}) \\
& =\operatorname{det}(\mathrm{O}) \operatorname{det}(\mathrm{O}) \\
& =(\operatorname{det} \mathrm{O})^{2}
\end{aligned}
$$

Take the square root of both sides.

$$
\operatorname{det} \mathrm{O}= \pm 1
$$

Therefore, the determinant of an orthogonal matrix is either +1 or -1 .

